首页> 外文OA文献 >Ureasil organic-inorganic hybrids as photoactive waveguides for conjugated polyelectrolyte luminescent solar concentrators
【2h】

Ureasil organic-inorganic hybrids as photoactive waveguides for conjugated polyelectrolyte luminescent solar concentrators

机译:Ureasil有机 - 无机杂化物作为共轭聚电解质发光太阳能聚光器的光活性波导

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The development of an efficient luminescent solar concentrator (LSC), with minimised optical losses, requires careful consideration of its principal constituting materials, a waveguide and a luminophore, in tandem. Here, a series of LSCs are fabricated utilising a poly(fluorene-alt-phenylene) copolymer containing on-chain perylenediimide (PDI) chromophore units as the luminophore (PBS-PFP-PDI) immobilised within a poly(oxyalkylene)/siloxane organic-inorganic hybrid, known as a ureasil, as the waveguide. PBS-PFP-PDI and the ureasil both function as photoactive components, offering the possibility of energy transfer between the ureasil host and/or the PBS-PFP donor chains to the PDI acceptor, leading to reduced re-absorption losses and harvesting a broader wavelength range of the solar spectrum. A combination of studies using UV/vis absorption, Fourier transform infrared, steady-state and time-resolved photoluminescence spectroscopies revealed that the branching of the ureasil framework influences the packing of the polymer chains, with the tri-podal ureasil structure facilitating improved dispersion of the PBS-PFP-PDI chains, while the linear di-ureasil structure promotes more intimate mixing of the PBS-PFP-PDI and the ureasil. Picosecond time-correlated single photon counting measurements showed that strong spectral overlap, combined with efficient electronic coupling results in efficient excitation energy transfer from the ureasil to emissive trap sites localised on the PBS-PFP unit. This process inhibits subsequent energy transfer to the PDI chromophore, but leads to high solid-state photoluminescence quantum yields of >50%. The optical efficiency of the PBS-PFP-PDI-ureasil composites as LSCs was evaluated under AM1.5G solar simulated light delivering values of up to 5.6% using a scattering background, which could be boosted to 13.1% by increasing the percentage of PDI units per PBS-PFP chains using a model system. The results demonstrate that consideration of the combined photophysical properties of the luminophore and the waveguide are crucial to the design of next generation LSCs.
机译:开发具有最小光学损失的高效发光太阳能集中器(LSC),需要仔细考虑其主要构成材料,波导和发光体。在这里,一系列的LSC是利用含有链上per二酰亚胺(PDI)生色团单元作为发光体(PBS-PFP-PDI)的聚(芴-alt-亚苯基)共聚物制成的,该发光体固定在聚(氧化烯)/硅氧烷有机化合物中无机杂化物,称为尿素硅,作为波导。 PBS-PFP-PDI和尿嘧啶均充当光敏组分,从而提供了尿素主体和/或PBS-PFP供体链之间的能量转移至PDI受体的可能性,从而减少了重吸收损失并获得了更宽的波长太阳光谱的范围。结合使用紫外线/可见光吸收,傅立叶变换红外光谱,稳态和时间分辨光致发光光谱的研究结果表明,脲硅骨架的支化影响聚合物链的堆积,三足脲硅结构有助于改善聚合物的分散性。 PBS-PFP-PDI链,而线性双脲基结构促进PBS-PFP-PDI和脲硅的更紧密混合。皮秒时间相关的单光子计数测量结果表明,强大的光谱重叠以及有效的电子耦合可将有效的激发能量从尿素硅转移到PBS-PFP单元上的发射阱位置。该过程抑制了随后的能量转移到PDI生色团,但导致了> 50%的高固态光致发光量子产率。 PBS-PFP-PDI-脲基复合材料作为LSC的光学效率是在AM1.5G太阳模拟光下使用散射背景在高达5.6%的传输值下评估的,通过增加PDI单元的百分比可以将其提高到13.1%每个PBS-PFP链使用模型系统。结果表明,考虑发光体和波导的综合光物理特性对于下一代LSC的设计至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号